Wood Drying Technology-wood drying kiln
Newer wood drying technologies have included the use of reduced atmospheric pressure to attempt to speed up the drying process. A variety of vacuum technologies exist, varying primarily in the method heat is introduced into the wood charge.
Hot water platten vacuum kilns use aluminum heating plates with the water circulating within as the heat source, and typically operate at significantly reduced absolute pressure. Discontinuous and SSV (super-heated steam) use atmosphere to introduce heat into the kiln charge. Discontinuous technology allows the entire kiln charge to come up to full atmospheric pressure, the air in the chamber is then heated, and finally vacuum is pulled.
SSV run at partial atmospheres (typically around 1/3 of full atmospheric pressure) in a hybrid of vacuum and conventional kiln technology (SSV kilns are significantly more popular in Europe where the locally harvested wood is easier to dry versus species found in North America). RF/V (radio frequency + vacuum) kilns use microwave radiation to heat the kiln charge, and typically have the highest operating cost due to the heat of vaporization being provided by electricity rather than local fossil fuel or waste wood sources.
Modern high-temperature, high-air-velocity conventional wood drying kilns can typically dry 1-inch-thick (25 mm) green lumber in 10 hours down to a moisture content of 18%. However, 1-inch-thick green Red Oak requires about 28 days to dry down to a moisture content of 8%. Most softwood lumber kilns operate below 240 °F (116 °C) temperature. Hardwood lumber kiln drying schedules typically keep the dry bulb temperature below 180 °F (82 °C). Difficult-to-dry species might not exceed 140 degrees